
The Cray XT4 Quad-core : A First Look ∗

Sadaf R. Alam, Richard F. Barrett, Markus Eisenbach, Mark R. Fahey,
Rebecca Hartman-Baker, Jeffrey A. Kuehn, Stephen W. Poole,

Ramanan Sankaran, and Patrick H. Worley
Oak Ridge National Laboratory

Oak Ridge, TN 37931

Presented at Cray User Group, Helsinki, Finland, May 5, 2008

Abstract

The Cray XT4 at Oak Ridge National Laboratory (ORNL), named Jaguar, has recently been up-
graded, from dual-core to quad-core processors in addition to other significant changes. Although we have
had very limited access to the machine and therefore are not presenting definitive performance results,
we can share some meaningful and constructive experiences to the user community which could be of
assistance as they gain access to Jaguar as well as other multi-core processor based parallel computers.
These experiences were gained while porting a broad set of scientific application programs to Jaguar.

1 Introduction

The Cray XT system located at Oak Ridge National Laboratory is the most powerful computing capability
for the Department of Energy’s (DOE) Office of Science, and in fact represents the largest open science
capability machine in the United States. Named Jaguar1, it is the primary leadership computer for the
DOE Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program2, which
supports computationally intensive, large-scale research projects. The 2008 program awarded over 140 million
processor hours on Jaguar to groups investigating questions in a broad set of science areas, including global
climate dynamics, nuclear fusion, nuclear fission, combustion energy, biology, astrophysics, and materials.

In order to support this required scale of computing, Jaguar has again been upgraded, this time from
a 119 TFLOPS capability to 262 TFLOPS. Several fundamental characteristics of the architecture have
changed with this upgrade, which motivates this report.

We begin with an overview of the hardware and software of the XT4. Next we present performance
results from some key applications running on this platform, with analysis supplemented by some relevant
micro-benchmarks. Then we discuss the performance potential for configuring applications using multi-core
aware constructs. We conclude with a discussion and summary of this study.

2 System and Software

The current incarnation of Jaguar is based on an evolutionary improvement beginning with the XT3, Cray’s
third-generation massively parallel processing system, building on the T3D and T3E systems. Based on com-
modity AMD Opteron processors, a Cray custom interconnect, and a light-weight kernel (LWK) operating
system, the XT3 was delivered in the summer of 2005. Each node consisted of an AMD Opteron model 150
(single core) processor, running at 2.4 GHz with 2 GBytes of DDR-400 memory. The nodes were connected
by a SeaStar router through HyperTransport, in a 3-dimensional torus topology, and running the Catamount
operating system[14]. Each processor was capable of two floating point operations per clock cycle, for a peak

∗This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

1http://www.nccs.gov/computing-resources/jaguar
2http://www.er.doe.gov/ascr/incite

1



2 SYSTEM AND SOFTWARE

System Processor Speeds Memory Network
Arch Date cores/ Num GHz Ops/ Peak GB/ DDR Mem Sea BW

node Nodes clock TFLOPS node GB/s Star GB/s
XT3 6/05 1 5,212 2.4 2 25 2 1 6.4 1 2.2
XT3 7/06 2 5,212 2.6 2 54 4 1 6.4 1 2.2

XT3/4 4/07 2 11,508 2.6 2 119 4 1,2 6.4/10.6 1,2 2.2,4
XT4 5/08 4 7,832 2.1 4 263 8 2 10.6 2 4

Table 1: Jaguar history at ORNL

performance of 4.8 GFLOPS. With 5,212 compute nodes, the peak performance of the XT3 was just over
25 TFLOPS. An evaluation of this configuration was presented in [2].

Jaguar processors were swapped out for dual-core Opteron model 100 2.6 GHz processors in July, 2006,
with memory per node doubled in order to maintain 2 GBytes per core. It was again upgraded April,
2007, with three major improvements: 6,296 nodes were added; memory on the new nodes was upgraded
to DDR2-667, increasing memory bandwidth from 6.4 GBytes per second (GB/s) to 10.6 GB/s; and the
SeaStar2 network chip connected the new nodes, increasing network injection bandwidth (of those nodes)
from 2.2 GB/s to 4 GB/s and increasing the sustained network performance from 4 GB/s to 6 GB/s. Thus
with 23,016 processor cores, this so-called XT3/XT4 hybrid provided a peak performance of 119 TFLOPS.
Evaluation of this configuration was presented in [1].

This spring Jaguar was again upgraded: 7,832 quad-core processors (illustrated in Figure 1) replace the
11,508 dual-core, the interconnect is now fully SeaStar2, and the LWK is a customized version of Linux,

(a) Barcelona (b) XT4 network

Figure 1: XT4 architecture

named Compute-Node Linux (CNL)3. Each compute node now contains a 2.1 GHz quad-core AMD Opteron
processor and 8 GBytes of memory (maintaining the per core memory at 2 GBytes). As before, nodes are
connected in a 3-dimensional torus topology, though now fully SeaStar2 router through HyperTransport (see
Figure 1(b)). This configuration provides 262 TFLOPS with 60 TBytes of memory. A history of some key
specs of the Jaguar upgrades are listed in Table 1.

Third-party developed software is managed by the NCCS, as described in [8]. This strategy presents the
user with a well-managed broad set of commonly used software libraries, configured using compilers from
three sources (PathScale, PGI, and gnu), consistent across several NCCS computing environments.

3Being re-named Cray Linux Environment (CLE).

Presented at Cray User Group 2 Helsinki, Finland, May 5, 2008



2.1 Message passing 3 APPLICATION CASE STUDIES

2.1 Message passing

The applications in this report are based MPI functionality. Performance of some key functionality4 with
regard to these applications is shown in Figures 2(a) and 2. These graphs highlight the importance of the

(a) IMB Allreduce on 4 cores (b) IMB Allreduce on quad core

(c) IMB Exchange on 4 cores (d) IMB Exchange on quad core

Figure 2: Performance of IMB Allreduce and Exchange.

newly release MPI implementation, contained in module mpt-3.0.1. A shared memory device has been
incorporated, significantly improving the performance within a quad-core processor. Figures 2(b) and 2(d)
show how performance changes as the number of cores increases. As expected, there is a significant increase
in the time required for the operations when operating on more than one node.

Unless otherwise stated, performance is reported for code compiled using PGI compilers, and the recently
released MPI implementation as contained in module mpt/3.0. With more time, however, we intend to
explore other compiler options as well as their capabilities (flags).

3 Application case studies

The true test of a machine’s ability to deliver performance to the computational scientist is to run the
actual application programs using representative experiments of interest. Our focus is on analyzing the
behavior of a broad set of representative applications executing problems of interest at the scale for which
the architecture is designed and applications are intended. Yet we remind the reader again of the maturity
level of the machine and our access to it thus far, and therefore caution strongly against drawing definitive
conclusions regarding this architecture’s ultimately capabilities. Our intent here is to share our experiences
up to this point, which we believe are significant and meaningful when placed in the appropriate context.

4Performance measurements of MPI functionality are provided using the Intel MPI Benchmark (IMB), version 3.1.

Presented at Cray User Group 3 Helsinki, Finland, May 5, 2008



3.1 Molecular dynammics: LAMMPS 3 APPLICATION CASE STUDIES

3.1 Molecular dynammics: LAMMPS

Molecular dynamics (MD) simulations enable the study of complex, dynamic processes that occur in biolog-
ical systems[13]. The MD related methods are now routinely used to investigate the structure, dynamics,
functions, and thermodynamics of biological molecules and their complexes. The types of biological activity
that has been investigated using MD simulations include protein folding, enzyme catalysation, conforma-
tional changes associated with bimolecular function, and molecular recognition of proteins, DNA, biological
membrane complexes. Biological molecules exhibit a wide range of time and length scales over which spe-
cific processes occur, hence the computational complexity of an MD simulation depends greatly on the time
and length scales considered. With a solvation model, typical system sizes of interest range from 20,000
atoms to more than 1 million atoms; if the solvation is implicit, sizes range from a few thousand atoms to
about 100,000. The time period of simulation can range from pico-seconds to the a few micro-seconds or
longer. Several commercial and open source software frameworks for MD calculations are in use by a large
community of biologists

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator[17]) is a classical molecular dy-
namics code. It models an ensemble of particles in a liquid, solid, or gaseous state and can be used to model
atomic, polymeric, biological, metallic or granular systems. The version used in these experiments is written
in C++ and MPI. Inter-process communication in LAMMPS is dominated by global reductions and nearest
neighbor communication.

Two experiments are presented herein. In the first, the medium-scale HhaI system is a model for protein-
DNA complex (enzyme m5C-methyltransferase M. HhaI with its target DNA sequence), in explicit solvent
and counter-ions to allow the system to be charge neutral. This model consists of 61,641 atoms with explicit
treatment of solvent using the TIP3P water model. The system was equilibrated before benchmarking runs.
The time-step is (1015 seconds). The long-range forces are calculated using PME. The performance of a
LAMMPS experiment consisting of 64,000 atoms is shown in Figure 3(a). As the number of cores increases,

(a) medium-scale HhaI system (b) RAQ system

Figure 3: LAMMPS simulation throughput.

throughput, defined as pico-seconds per day, should increase. This was the case for the previous versions of
Jaguar as well as on an IBM BlueGene/L. However, beyond 128 cores on Jaguar, performance is starting to
degrade, and by 512 cores performance is approximately half that of the dual-core Jaguar.

A larger experiment was run, consisting of 290,220 atoms. Using the RAQ system, this experiment
modeled the enzyme RuBisCO with explicit treatment of solvent. Performance results are shown in Figure
3(b). Here, with more work per processor, performance is on par with the previous versions of Jaguar up
to 256 cores, though it is starting to degrade. By 512 cores performance is less than half that of previous
Jaguars, and even drops below the performance of IBM BlueGene/P by 4,096 cores.

Its important to note that these experiments were run very early during the quad-core upgrade, with no
chance to analyze the runtime behavior and make adjustments. In the next section we will see some very
simple things that might significantly improve performance.

Presented at Cray User Group 4 Helsinki, Finland, May 5, 2008



3.2 GYRO: Fusion Energy 3 APPLICATION CASE STUDIES

3.2 GYRO: Fusion Energy

GYRO[5] is a code for the numerical simulation of tokamak microturbulence, solving time-dependent, non-
linear gyrokinetic-Maxwell equations with gyrokinetic ions and electrons capable of treating finite electro-
magnetic microturbulence. GYRO uses a five-dimensional grid and propagates the system forward in time
using a fourth-order, explicit, Eulerian algorithm. GYRO has been ported to a variety of modern HPC
platforms including a number of commodity clusters.

Version 6.5 of GYRO was used to run two standard benchmark problems: B1-std and B3-gtc. The
two problems differ in size and computational and communication requirements per process. The B1-std
problem is smaller but requires more work per grid point than the B3-gtc problem. However, GYRO tends
to scale better for the B3-gtc problem than the B1-std problem. The B3-gtc problem can use an FFT-
based approach or a non-FFT approach; for our tests we use the FFT-based approach and use the vendors
optimized FFT library when available (which it is on Jaguar). The primary communication costs result from
calls to MPI ALLTOALL, used to transpose distributed arrays[4] among the dimensions.

The B1-std problem is a 16 toroidal-mode electrostatic (electrons and ions, 1 field) case on a 16×140×8×
8× 20 grid. This test simulates kinetic electrons and electron collisions, with no electromagnetic effects, for
500 time steps, and requires multiples of 16 processes. Figure 4(a) demonstrates the strong scaling of GYRO

(a) B1-std (b) B3-gtc

Figure 4: GYRO strong scaling performance

for the B1-std problem achieved. The y-axis represents the number of simulation time steps achieved per
second of wall clock. The graph shows the performance advantages of using the -tp barcelona-64 compiler
flag and the recently released shared memory aware MPI implementation contained in mpt 3. However, the
XT4 quickly runs out of work per process as the process count increases, so performance does not improve
much as the number of cores increases beyond 128, and therefore a larger problem is required.

The B3-gtc problem is a 64 toroidal-mode adiabatic (ions only, 1 field) case on a 64×400×8×8×20 grid.
This test runs on multiples of 64 processes, computing 100 timesteps representing 3 simulation seconds. The
400-point radial domain with 64 torodial modes gives high spatial resolution, but electron physics are ignored
allowing simple field solves and large timesteps. Figure 4(b) shows the strong scaling of GYRO for the B3-gtc
problem. Performance increases up to 2,048 processes without any significant drop in efficiency. For this
example, however, inclusion of the quad-core compiler flag -tp barcelona-64 provides a very significant
performance increase, with an additional but smaller boost from the new MPI implementation.

However, its important to recall that this rather small decrease in performance relative to dual-core
Jaguar is even more significant since per core capability is twice that for quad-core relative to dual, less the
decrease in clock speed. This strongly suggests that vectorization of the code is not taking place, an issue
we will explore in the next section.

Figures 5(a) and 5(b) show that communication costs are about the same on dual-core and quad-core
XT4. As presented in[7], GYRO is memory bandwidth limited and therefore the quad-core socket memory
bandwidth is a bottleneck.

Figure 6 shows the weak scaling characteristics of GYRO for a “modified B3-gtc” problem. The problem
was modified to fit the memory of a BlueGene/L for cross-platform comparisons. The code is weakly scaled by

Presented at Cray User Group 5 Helsinki, Finland, May 5, 2008



3.3 Combustion: S3D 3 APPLICATION CASE STUDIES

(a) B1-std (b) B3-gtc

Figure 5: GYRO strong scaling communication costs

Figure 6: GYRO B3-gtc weak scaling performance

keeping the ”ENERGY GRID” size constant as the number of processes increases. In this figure, XT4.Apr08
is the current quad-core XT at ORNL, while XT.Nov07 refers to the previous dual-core XT3/XT4 machine
where a job could run across differing numbers of XT3 and XT4 nodes. Since the number of each type of
XT node was not tracked for the XT.Nov07 tests, the line is generically labeled XT and could be XT3-only,
XT4-only, or a combination and this would explain otherwise anomalous-looking characteristics. Note that
although there is a slight drop-off in performance out to 16K cores on the quad-core XT4 (running the
CNL operating system), the drop is not near as much as witnessed on the dual-core XT3/XT4 (running
Catamount.)

3.3 Combustion: S3D

S3D is a direct numerical simulation solver for the full compressible Navier-Stokes, total energy, species and
mass continuity equations coupled with detailed chemistry [9, 19]. It is based on a high-order accurate,
non-dissipative numerical scheme. The governing equations are solved on a conventional three-dimensional
structured Cartesian mesh. Spatial differentiation is achieved through eighth-order finite differences along
with tenth-order filters to damp any spurious oscillations in the solution. The differentiation and filtering
require nine and eleven point centered stencils, respectively. Time advancement is achieved through a six-
stage, fourth-order explicit Runge-Kutta (R-K) method1. Navier Stokes characteristic boundary condition
(NSCBC) treatment [18, 20, 21] is used on the boundaries. Fully coupled mass conservation equations for
the different chemical species are solved as part of the simulation to obtain the chemical state of the system.
Detailed chemical kinetics and molecular transport models are used. An optimized and fine-tuned library
has been developed to compute the chemical reaction and species diffusion rates based on Sandia’s Chemkin

Presented at Cray User Group 6 Helsinki, Finland, May 5, 2008



3.4 AORSA: Fusion Energy 3 APPLICATION CASE STUDIES

package. While Chemkin-standard chemistry and transport models are readily usable with S3D, special
attention is paid to the efficiency and performance of the chemical models. Reduced chemical and transport
models that are fine -tuned to the target problem are developed as a pre-processing step.

S3D is parallelized using a three-dimensional domain decomposition and MPI communication. Each MPI
process is responsible for a piece of the three-dimensional domain. All MPI processes have the same number
of grid points and the same computational load. Inter-processor communication is only between nearest
neighbors in a logical three-dimensional topology. A ghost-zone is constructed at the processor boundaries
by non-blocking MPI sends and receives among the nearest neighbors in the three-dimensional processor
topology. Performance of this sort of operation is shown in Figures 2(c) and 2(d). Global communications
are only required for monitoring and synchronization ahead of I/O.

A comparison of dual-core and quad-core performance is show in Table 2. The initial port showed

Dual-core Quad-core
Problem Size MPI mode Time Cost Time Cost

vec vec
30 × 30 × 30 -n 1 -N 1 404 150 415 333 154 123
60 × 30 × 30 -n 2 -N 2 465 172 430 349 159 129
60 × 60 × 30 -n 4 -N 4 n/a n/a 503 422 186 156

Table 2: S3D single processor performance (weak scaling mode).
The amount of work is constant for each process. “MPI mode” refers to the number of MPI processes and
how they are assigned to each node: -n is the total number of processes, -N is the number of processes assigned
to each quad-core processor node. Time is wall clock in units of seconds; “cost” is defined as µsec pergrid
point per time step. The “vec” columns show the performance after the code was reorganized for stronger
vectorization.

a decrease in performance, though less than that attributable to only the decrease in clock speed. This
suggests that vectorization is occurring, though not as aggressively as desired. Special effort was applied
to the computation of reaction rates, which was consuming approximately 60% of overall runtime. The
resulting vectorization significantly reduced overall runtime.

Table 3 shows the effects of the compiler when able to vectorize code. Although for each category the

Before After
Counters ×109 operations
Add 182 187
Multiply 204 210
Add + Mult 386 397
Load/Store 179 202
SSE 91 212

Table 3: S3D reaction rate computation counters. (Values from dual-core Jaguar.)

number of operations increases, the proportion of operations occurring in vector mode increased by 233%,
resulting in a decreasing in runtime of this computation by over 20%.

3.4 AORSA: Fusion Energy

The two- and three-dimensional All-ORders Spectral Algorithm (AORSA[12]) code is a full-wave model
for radio frequency heating of plasmas in fusion energy devices such as the International Thermonuclear
Experimental Reactor5 (ITER) and the National Spherical Torus Experiment6 (NSTX).

AORSA operates on a spatial mesh, with the resulting set of linear equations solved for the Fourier
coefficients. A Fast Fourier Transform algorithm converts the problem to a frequency space, resulting in a

5http://www.iter.org
6http://nstx.pppl.gov

Presented at Cray User Group 7 Helsinki, Finland, May 5, 2008



3.4 AORSA: Fusion Energy 3 APPLICATION CASE STUDIES

dense, complex- valued linear system. Parallelism is centered on the solution of the dense linear system,
currently accomplished using a locally modified version of HPL[16, 3]. Quasi-linear diffusion coefficients are
then computed, which are serve as input to a separate application (Fokker-Plank solver) which models the
longer term behavior of the plasma.

AORSA has a distinguished history running on the XT-series, allowing researchers to conduct experiments
at resolutions previously unattainable[2, 1] executing at unprecedented computational scales. For example,
the first simulations of mode conversion in ITER were run on the single-core XT3[10] on a 350 × 350 grid.
On the dual-core XT3/XT4, this feat was again achieved, at increased resolution (500× 500 grid), with the
linear solver achieving 87.5 TFLOPS7 (74.8% of peak) on 22,500 cores[11]. This same problem run on the
quad-core Jaugar increased this performance to 116.5 TFLOPS, and when run on 28,900 cores performance
increased to 152.3 TFLOPS. Performance results for this scale are shown in Figure 7. While impressive,

(a) Total time on 22,500 cores (b) Solver time

(c) Solver TFLOPS (d) Solver GFLOPS per core

Figure 7: AORSA performance on Jaugar.
Operating on a 500x500 grid, we compare Jaguar dual-core (DC) with the new quad-core (QC), using ScaLA-
PACK, HPL, then HPL with the GotoBLAS (from then on added the default in libsci) and mixed-precision
(MP). Cores counts are 22,500 and 28,900, somewhat dictated by the solver requirement of a 2d logical
processor grid.

relative to the theoretical peak performance has decreased from 74.8% to 61.6%. This is not unexpected due
to the decreased clock speed and other issues associated with the increased number of cores per processor, we
are pursuing further improvements. However, the time-to-solution (the relevant metric of interest) dropped
from 73.2 minutes to 55.0 minutes, a decrease of 33%.

Although we expect performance of the solver phase to increase based on planned improvements to the
7Performance of the linear solver is a function of the algorithmic requirements. That is, for matrix dimension N , the number

of floating point operations is calculated to be 8/3N3 + 4/3N2 operations, which is divided by wall-clock time to yield the
computational rate.

Presented at Cray User Group 8 Helsinki, Finland, May 5, 2008



3.4 AORSA: Fusion Energy 3 APPLICATION CASE STUDIES

BLAS library and the MPI implementation, we are also experimenting with a mixed-precision approach[15].
This capability is now included in the Cray math library (-libsci) as part of the Iterative Refinement
Toolkit (IRT). Some early results are shown in Figure 8. While this technique shows promise, it is not

(a) 128x128 grid on dual-core Jaguar. (b) 350x350 grid on dual- and quad-core Jaguar.

Figure 8: AORSA solver performance : HPL and mixed-precision solver (IRT)

providing an improvement at the relevant problem scales. Although the condition of the matrix increases
with resolution, this does not appear to be an issue. More likely is the use of the ScaLAPACK factorization
routine within IRT compared with the HPL version: at 22,500 cores on the dual-core Jaguar, ScaLAPACK
realized 48 TFLOPS, whereas HPL achieved 87 TFLOPS. Although the magnitude is somewhat surprising,
the general distinction is not: ScaLAPACK is a set of reference implementations, and uses computation and
communication libraries designed for all of its supported algorithms and data structures. HPL, on the other
hand, implements a single algorithm for a single matrix structure using tuned techniques.

The computation of the quasi-linear linear diffusion coefficients consumes the bulk of runtime external of
the linear solver. The major task is the solution of a definite integral, involving multiple sweeps across the
grid, computing a variety of derivatives. Initial performance was quite disappointing, decreasing somewhat
proportionally with the clock speed, strongly hinted that vectorization was not occurring. Reconfiguration
of the major (nested) loops involved in this computation resulted in significantly stronger performance, as
shown in Figure 9.

Figure 9: AORSA performance : Computation of the quasi-linear operator on a 128x128 grid, on dual- and
quad-core Jaguar.

New experiments are being configured to take advantage of Jaguar’s increased capabilities, especially with
regard to increased grid resolution. Science and performance results will be presented in future publications.

Presented at Cray User Group 9 Helsinki, Finland, May 5, 2008



3.5 DCA++: Materials Modeling 3 APPLICATION CASE STUDIES

3.5 DCA++: Materials Modeling

DCA++ is designed to simulate materials where electronic correlations are im- portant using a dynamical
cluster approximation or other quantum cluster the- ories. It can use quantum Monte Carlo and also di-
agonalisation solvers (such as as Lanczos). The code is based on the psimag toolkit for materials codes,
allowing for easy extension, although presently the focus is on solving Hubbard models for the supercon-
ducting cuprates. DCA++ is part of our QMOD (quantum models) framework for the study of strongly
correlated electrons.

Quantum cluster methods such as the DCA map the problem onto an effective cluster self-consistently
embedded in a mean-field. The effective cluster problem is solved with a massively parallel Hirsch-Fye
quantum Monte Carlo (QMC) algorithm. Along the QMC Markov chain, measurements of physical quantities
such as the single-particle Greens function and two-particle correlation functions are performed. Between
the measurements, the Greens function is updated using a Dyson equation. The majority of the CPU
time of a typical DCA QMC simulation is spent in the Greens function updates and the measurements.
These two inner loops are highly optimized to run efficiently on the NCCS machines. The Greens function
updates are given by a vector outer product, This computation is optimized by delaying the update, thus
effectively replacing the vector outer product by a slender rectangular matrix-matrix multiply. This allows us
to perform the Greens function update very efficiently with the BLAS level 3 subroutine dgemm[6]. The other
CPU intensive task is the measurement of two- particle correlation functions. In the QMC technique, this
reduces to evaluating products of Greens functions which are optimized by transforming from space- time
to reciprocal space and frequency. These Fourier transforms are handled using the BLAS level 3 subroutine
zgemm.

The two inner loops in the Green’s function updates have previously been optimized to run efficiently on
the NCCS machines: the Green’s function updates are given by a vector outer product, Gc = Gc + a ∗ b,
where the Greens functions Gc and Gc are matrices of size Nt×Nt. To optimize this computation, we delay
the update, effectively replacing the vector outer product by a slender rectangular matrix-matrix multiply
for matrices of size 32×Nt. This allows us to perform the Greens function update very efficiently with the
dgemm. Previously, on the Cray X1E installed at ORNL8 we experienced up to a 5-fold speedup as a result of
the delayed updates. The performance of this computation on the quad-core XT4, using the gCC compiler,
is shown in Figure 10.

Figure 10: DCA++ performance

The other CPU intensive task is the measurement of two-particle correlation functions. In the QMC
technique, this reduces to evaluating products of Greens functions which are optimized by transforming
from space-time to reciprocal space and frequency. These Fourier transforms are handled using the zgemm
and therefore run at speeds near peak performance. The QMC algorithm is parallelized in the standard
way for Monte Carlo methods by distributing the Markov chain onto many processors. Several independent,
shorter Markov-chain walks on different processors are performed and the final result is obtained by averaging
the results of each walk using MPI. Apart from the fraction of the walk required to achieve equilibrium, the
result is an almost perfectly parallel speedup with an increasing number of processors. This arises because

8http://www.nccs.gov/computing-resources/phoenix

Presented at Cray User Group 10 Helsinki, Finland, May 5, 2008



4 SUMMARY

no communication is required in the inner loops of the code. As a result, the code scales to several hundreds
of processing units with almost ideal speedup.

The DCA++ code is written in the C++ programming language using generic programming models like
the C++ Standard Template Library and the Psi-Mag toolkit. BLAS libraries are called for dense linear
algebra computa- tions in the inner loops of the code. The MPI library is used for parallelization and
communication.

4 Summary

Jaguar, the Cray XT4, located at Oak Ridge National Laboratory has been upgraded in processor, memory,
and network. Our “first look” at the performance of a broad set of scientific application programs and micro-
benchmarks illustrates that performance increases over the previous Jaguar configuration are possible, though
steps must be taken in order to exploit new architecture capabilities.

The compiler flag -tp barcelona-64 must be included in order to access quad-core specific capabilities
when compiling on the Jaguar dual-core login-in nodes. We found the latest MPI implementation, contained
in module mpt3.0, a significant improvement over the previous version, attributable to the inclusion of a
shared memory capability. This should quickly become the default on Jaguar.

The quad-core processor provides the potential for four floating point operations per clock cycle, an
increase from the previous two on the dual-core processor. Access to this potential requires that the compiler
vectorize the code, a capability hindered by certain coding syntax and semantics. We found it relatively easy
to re-organize code so that the compiler can apply its vectorization techniques. Verification of this capability
is visible during compilation when generating a loop-mark listing, enabled using compiler flag -Mlist. We
also recommend examining the information provided by compiler flag -Minfo.

We again emphasize that the results reported in this paper must be viewed as preliminary due to our
limited access to Jaguar. In some cases the application was compiled and executed once, with no opportunity
to analyze performance. (This was the case with LAMMPS, reported in Section 3.1.) In other cases time
constraints permitted only rudimentary analysis, which was the case for GYRO, discussed in Section 3.2.
When time was spent analyzing performance and making meaningful modifications to the code (as was the
case with S3D and AORSA), significant performance gains were made. Its important to note as well that
these changes should result in performance improvements on any processor that has vectorization capabilities.

We also illustrated the potential performance improvements of considering alternative algorithm ap-
proaches. (AORSA is now configured to use the mixed-precision linear solver technique.) The reality is that
clock speeds probably won’t increase at the rates seen during the past several years. Instead, performance
potential will be provided through processor, memory, and network hierarchies and heterogeneities, so we
encourage code developers to explore new algorithms and computational approaches that can exploit these
capabilities.

Time constraints prevented us from examining inter-node communication issues. Typically we execute
applications using subsets of the cores available on a node, which can expose network contention issues
and suggest flow control requirements. The importance of this issue is hinted at in the communication
benchmarks shown in Figures 2(a) and 2(b). We intend to examine this issue as soon as possible.

Finally, deeper analysis of the issues discussed in this report, as well as other issues, will be reported in
a timely fashion.

Acknowledgements

The application programs cited in this report are developed and maintained by a broad set of projects,
representing several science areas, funding by several agencies, including the Department of Energy Office of
Science and National Nuclear Security Agency, the Department of Defense, the National Science Foundation,
and the National Oceanic and Atmospheric Administration.

John Levesque of Cray, Inc. contributed to the performance improvements reported for S3D. Adrian
Tate of Cray configured the mixed-precision solver in AORSA. We had several useful discussions with Brian
Waldecker of AMD, Inc. Several members of NCCS system administration provided invaluable assistance.

Presented at Cray User Group 11 Helsinki, Finland, May 5, 2008



REFERENCES REFERENCES

References

[1] S.R. Alam, R.F. Barrett, M.R. Fahey, J.A. Kuehn, J.M. Larkin, R. Sankaran, and P.H. Worley. Cray
XT4: An Early Evaluation for Petascale Scientific Simluation. In Proceedings of the IEEE/ACM Con-
ference on Supercomputing SC’07, 2007.

[2] S.R. Alam, R.F. Barrett, M.R. Fahey, J.A. Kuehn, E.O.B. Messer, R.T. Mills, P.C. Roth, J.S. Vetter,
and P.H. Worley. An Evaluation of the Oak Ridge National Laboratory Cray XT3. International Journal
of High Performance Computing Applications, 22(1):52:80, 2008.

[3] R.F. Barrett, T. Chan, E.F. D’Azevedo, E.F. Jaeger, K. Wong, and R. Wong. A complex-variables
version of high performance computing LINPACK benchmark (HPL). 2008. In preparation.

[4] J. Candy. A 5-dimensional array distribution algorithm for distributed memory computers. 2002.

[5] J. Candy and R. Waltz. An Eulerian gyrokinetic-Maxwell solver. Journal of Computational Physics,
186(545), 2003.

[6] J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammerling. A set of level 3 basic linear algebra subprograms.
ACM Trans.on Math. Soft., 16:1–17, 1990.

[7] M. Fahey. Portable performance optimizations based on a performance history of the fusion code GYRO.
In IEEE/ACM Conference on Supercomputing SC’06, Poster, 2006.

[8] Mark Fahey and Nick Jones. Design, implementation, and experiences of third-party software adminis-
tration policies at the ORNL NCCS. In Proceedings of the 50th Cray User Group, 2008.

[9] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Direct numerical simulation of turbulent
combustion: fundamental insights towards predictive models. In Journal of Physics: Conference Series,
vol. 16, 2005.

[10] E.F. Jaeger, L.A. Berry, S.D. Ahern, R.F. Barrett, D.B. Batchelor, E.F. D’Azevedo, R.D. Moore, R.W.
Harvey, J.R. Myra, D.A. A’Ippolito, R.J. Dumont, C.K. Phillips, H. Okuda, D.N. Smithe, P.T. Bonoli,
J.C. Wright, and M. Choi. Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron
heating in non-Maxwellian plasmas. Physics of Plasmas, 13, May 2006.

[11] E.F. Jaeger, L.A. Berry, R.F. Barrett, and E.F. D’Azevedo et al. Simulation of high power ICRF wave
heating in the ITER burning plasma. In Proceedings of the 49th Annual Meeting of the Division of
Plasma Physics of the American Physical Society, volume 52, 2007. Bulletin of the American Physical
Society.

[12] E.F. Jaeger, L.A. Berry, E. D’Azevedo, D. B. Batchelor, and M. D. Carter. All-orders spectral calculation
of radio-frequency heating in two-dimensional toroidal plasmas. Phys. Plasmas, 8(5):1573–1583, 2001.

[13] M. Karplus and G.A. Petsko. Molecular dynamics simulations in biology. Nature, 1990.

[14] Suzanne Kelly and Ron Brightwell. Software architecture of the lightweight kernel, catamount. In
Proceedings of the 47th Cray User Group, 2005.

[15] J. Langou, J. Langou, P. Luszczek, J. Kurzuk, A. Buttari, and J. Dongarra. Tools and techniques for
performance—exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy
(revisiting iterative refinement for linear systems). In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing (SC06), 2006.

[16] A. Petitet, R.C. Whaley, J.J. Dongarra, and A. Cleary. HPL: A portable high-performance LIN-
PACK benchmark for distributed-memory computers. http://www.netlib.org/benchmark/hpl, Jan-
uary 2004.

[17] S.J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational
Physics, 117, 1995.

Presented at Cray User Group 12 Helsinki, Finland, May 5, 2008



REFERENCES REFERENCES

[18] T. J. Poinsot and S. K. Lele. Boundary-conditions for direct simulations of compressible viscous flows.
Journal of Computational Physics, 101, 1992.

[19] J. C. Sutherland. Evaluation of mixing and reaction models for large-eddy simulation of nonpremixed
combustion using direct numerical simulation. PhD thesis, Dept of Chemical and Fuels Engineering,
University of Utah, 2004.

[20] J. C. Sutherland and C. A. Kennedy. Improved boundary conditions for viscous, reacting, compressible
flows. Journal of Computational Physics, 191, 2003.

[21] C. S. Yoo, Y. Wang, A. Trouve, and H. G. Im. Characteristic boundary conditions for direct simulations
of turbulent counterflow flames. Combustion Theory and Modelling, 9, 2005.

Presented at Cray User Group 13 Helsinki, Finland, May 5, 2008


